小柴さんはアメリカに船で渡った

今週の書物/
『物理屋になりたかったんだよ――ノーベル物理学賞への軌跡』
小柴昌俊著、朝日選書、2002年刊

氷川丸

ワタクシ的に言えば、今年は父喪失の年だった。本物の父が5月に97歳で逝った。8月には科学記者仲間の父親的存在だった柴田鉄治さんが85歳で永眠した(当欄2020年9月11日付「新聞記者というレガシー/その1」、当欄2020年9月18日付「新聞記者というレガシー/その2」)。そして11月、日本の物理学界の巨星とも言える物理学者、小柴昌俊さんが94歳で生涯の幕を閉じた。小柴さんもまた、「父親」という言葉が似合う人だった。

3人に共通するのは、昭和戦前を知り、昭和戦後を生き抜いて、平成を見届けたことだ。その世代が今、次々に退場する。やがては代わって高齢層の先頭集団となる私たちは、父親たちが世の中の第一線にいた昭和戦後のことを語り継ぐ義務があるのかもしれない。

で、今回は、小柴さんについて書く。物理学者としての快挙は1987年、岐阜・富山県境部の神岡鉱山地下にしつらえた巨大な水タンクで、銀河系のすぐそばに現れた超新星が放つ素粒子ニュートリノを検知したことだ。この水タンクがカミオカンデである。

カミオカンデは、もともと陽子崩壊という現象を発見する狙いでつくられた。ところが、なかなか見つからない。それならば、とニュートリノの観測もしやすいように改造したら、その数カ月後に超新星ニュートリノが飛び込んできた。幸運と言えば幸運。ただそこには、一つの的が外れたときに備えて二つめ、三つめの的を用意する、という周到さがあった――そんなことを先日、私は「評伝」に書いた(朝日新聞2020年11月19日朝刊科学面)。

当欄は「評伝」とは異なるので、個人的な感慨も披歴しよう。小柴さんは幸運だったが、私自身もまた幸運だったのだ。私は1987年3月、朝日新聞科学部員として小柴グループの超新星ニュートリノ捕獲を記事にしたが、その機会に恵まれたのは同年1月の持ち場替えで物理・天文担当になっていたからだ。カミオカンデが改造から数カ月で超新星ニュートリノを捕まえたように、私も担当になって数カ月で科学の大ニュースと遭遇したのだ。

超新星ニュートリノの捕獲は、科学史の上でも大きな転換点だった。これによって、素粒子物理を粒子加速器のような超大規模の実験装置ではなく、自然観測を通じて探究する流れが再評価された。巨大科学(ビッグサイエンス)の潮流に一石を投じたのである。その動きを追いかけることができたのは記者冥利に尽きる。それだけではない。私は取材を通じて、小柴昌俊という魅力あふれる科学者の人間像を間近に見ることができたのだ。

で今週は、小柴さんの自伝『物理屋になりたかったんだよ――ノーベル物理学賞への軌跡』(小柴昌俊著、朝日選書、2002年刊)から、とっておきの話をいくつか紹介する。

この本をとりあげることには、ためらいもある。自身が本づくりにかかわったからだ。その経緯は、巻末に収めた「インタビューを終えて」という一文で明かしている。2002年晩夏、私は小柴さんに計3回、約10時間のインタビューをした。当時、朝日新聞出版局の編集者だった赤岩なほみが、この記録をもとに参考文献に照らしてまとめあげたものを小柴さんが推敲したのである。その結果、小柴さんらしい語り口が残る自伝となっている。

考えてみれば、この方式をとったからこそ、小柴さんがストックホルムでノーベル物理学賞を受けた15日後に刊行するという早業が実現したのだ。その夏、赤岩と私の間には「小柴さんのノーベル賞は近い」という共通認識があったが、そこにとどまらず「インタビューの聞き手を引き受けてほしい」ともちかけてきた彼女の英断に脱帽する。ここにもまた、幸運をつかみとる用意周到さがあったとみるのは、こじつけ過ぎだろうか。

さて今回、当欄で焦点を当てようと思うのは、小柴さんが1950~60年代に経験した米国生活だ。最初は1953年、ニューヨーク州のロチェスター大学に留学したときだ。横浜港で氷川丸に乗り込み、米西海岸のシアトルまで10日間余の船旅をしたという。

注目すべきは、そのころから小柴さんが用意周到だったことだ。船に同乗していた女子留学生二人から滞米時の連絡先をしっかり聞きだしていたのである。そのこまめさが、米国に渡ってからものを言う。マサチューセッツ工科大学に留学中の友人を訪ねたとき、近くに住む彼女たちに声をかけ、4人でデートしたのだ。「海岸に行って、それから晩飯をおごって、それでさようなら」というから「かわいらしいもの」だった。念のため。

もちろん、遊んでいたばかりではない。博士論文を書こうという学生には、そのまえに厳しい関門があった。まず語学試験に、次いで1週間ぶっ通しの集中試験に合格しなければならなかったのだ。語学では、二つの外国語の習得が求められた。英語はもちろん、日本語も外国語扱いされない。「それで、高等学校時代についばんだドイツ語とフランス語を、ハイネやモーパッサンを思い出しながら勉強した」。さすが、旧制高校出身者だ。

小柴さんが学位論文にまっしぐらだったのには訳がある。懐事情だ。留学中、当時の日本の感覚で言えば破格の月額120ドルが支給されていたが、物価が高いので生活は苦しかったという。交通費を切り詰めようとして「古いフォードを一五ドルで買ったところ、一カ月くらい乗ったらエンジンが破裂してしまった」というような日々。こんなときに指導教授から、博士号をとれば「月に最低四〇〇ドルは保証される」と聞きつけていたのだ。

学位論文のテーマは「宇宙線中の超高エネルギー現象」だった。指導教授のグループが「原子核乾板」という道具を風船(気球)につけて上空に浮かべ、宇宙線を観測していたので、そのデータを解析した。借金を背負いながらの研究だったそうだ。論文を指導教授に提出するときには「これで学位をくれないなら、日本へ帰る」と、啖呵まで切った。そのひとことが功を奏したわけではないだろうが、論文は異例の速さで審査を通過したという。

圧巻は、2度目の渡米後の1960年、シカゴ大学を拠点とする国際共同実験の指揮を任されたときの失敗談だ。ジョージア州の海軍基地から、原子核乾板搭載の観測機器を風船につないで飛ばした。機器は時間がくると風船から離され、落下傘で舞い降りる、という仕掛けになっている。ところが、切り離しのタイマーが雷の直撃を受けたらしく、機器はいつまでも風船にぶら下がったままだ。飛行機から切り離しの信号を飛ばしてもダメだった。

この窮地に、小柴さんはどうしたか。本人の回想によれば、米海軍の幹部に電話して、風船を落下させるために軍用機を出動させてほしい旨の要求をまくし立てた。「言いたい放題」だ。「敗戦国民のわたしが、アメリカの海軍にああしろ、こうしろと命令するのは、正直言って気分がよかった」と振り返る。実際、海軍は軍用機で風船を銃撃したらしい。それでも風船は太平洋上空まで流され、観測機器はついに行方知れずになったという。

実験そのものは失敗だった。だが小柴さんは、ここから二つのことを学ぶ。巧妙な交渉術と実験家の心得だ。指南役は、イタリア出身の物理学者ジュゼッペ・オッキャリーニだった。軍人とのやりとりでは「喧嘩の仕方をいろいろコーチしてくれた」。実験のことでは、観測装置に信号が伝わらない事態を想定して、その場合でもデータを回収できるしくみにしておくよう「お説教」したという。小柴流用意周到の原点は、ここらへんにありそうだ。

不可解なのは、小柴さんが米海軍に対し、風船相手の作戦にU2を使うよう求めたとしていること。U2は偵察機だから、ちょっとおかしい。1960年、この機種は旧ソ連上空で地対空ミサイルに撃ち落とされるなど注目の的だったので、思わず口を突いて出たのだろうか。

この逸話には、違和感を覚える人が少なくないだろう。1960年は、日本で日米安保条約反対のうねりが高まった年だ。知識人の間には、文系であれ理系であれ、反戦、反米の思いが強かった。そんな時流を知らぬげに米軍と屈託なくかかわったのだから、批判されても不思議はない。そこにあったのは、人道に反しないなら使えるものは使うという合理主義か。ただ一つ言えるのは、小柴さんは日本社会のものさしに収まらない人だったということだ。
(執筆撮影・尾関章)
=2020年12月11日公開、同月14日最終更新、通算552回
■引用はことわりがない限り、冒頭に掲げた書物からのものです。
■時制や人物の年齢、肩書などは公開時点のものとします。
■公開後の更新は最小限にとどめます。

偶然のどこが凄いかがわかる本

今週の書物/
『この世界を知るための人類と科学の400万年史』
レナード・ムロディナウ著、水谷淳訳、河出文庫、2020年刊

多面ダイス

先週に引きつづいて、科学史の大著『この世界を知るための人類と科学の400万年史』(レナード・ムロディナウ著、水谷淳訳、河出文庫、2020年刊)をとりあげる。当欄恒例の本文冒頭のまくら代わりに、今回はこの本に出てくる印象深い余話を一つ。

著者にはテレビドラマの脚本家というもう一つの顔があることは前回、すでに書いた。著者が「新スタートレック」の企画会議に出たときのことだ。太陽風という物理現象にかかわる筋書きを提案した。「そのアイデアとそのおおもとにある科学を熱心に細かく説明した」のである。してやったり、という感じか。ところが、プロデューサーの反応は予想外だった。「不可解な表情で一瞬私をにらみつけ、大声で言った。『黙れ、くそインテリ野郎!』」

その場に居合わせた人で物理学の学究は、著者一人。一方、くだんのプロデューサーはニューヨーク市警の刑事出身という人物だった。このエピソードは、科学者の思考様式が俗世間でどう見られているのかを如実に物語っている。ひとことで言えば、面倒くさいヤツだと煙たがられているのだ。著者の本に好感がもてる理由は、著者自身が世間の空気にどっぷり浸かり、自らが煙たがられる立場に身を置いてきた科学者だからだろう。

著者は世俗の事情をよく知っている。だから、科学思考を世俗の関心事と照らしあわせることを忘れない。私がかつて書評した著者の本『たまたま――日常に潜む「偶然」を科学する』(田中三彦訳、ダイヤモンド社)も、そうだった(朝日新聞2009年11月8日朝刊)。そもそも、世情に通じているから「偶然」にこだわるのだろう。この『…400万年史』も、科学がそれぞれの時代、偶然をどう位置づけてきたかを跡づけている。

で、今回は、この本の近現代史部分に的を絞って偶然観の変転を切りだす。それは、劇的だった。脇役がいきなり主役に躍り出たのだ。そこで表題は、先週の「科学のどこが凄いかがわかる本」(当欄2020年11月20日付)の「科学」を「偶然」に置き換えてみた。

最初に登場願いたいのは、アイザック・ニュートンだ。1687年に刊行した著書『プリンキピア』で、この世の物体は三つの運動法則に従うこと、物体には遍く万有引力が働いていることを示した。そこから導かれたのが、方程式通りに変化する決定論の世界観である。

この本では、ニュートン没後の18世紀半ば、物理学者ルジェル・ボスコヴィッチが書き記した見解が引用されている。「力の法則がわかっていて、ある瞬間におけるすべての点の位置と速度と方向がわかれば、そこから必然的に起こるすべての現象を予測できる」。数学者で天文学者のピエール=シモン・ラプラス(1749~1827)が未来の完全予見はありうるとして思い描いた〈ラプラスの魔〉も、同様の見方に支えられていると言えよう。

この世界観を崩したのが、20世紀の量子論だ。本書を参照しながら、その流れをたどろう。まず19世紀末の1900年、マックス・プランクが、エネルギーは1個、2個……と数えられるとする量子仮説を提起した。これに従って、ニールス・ボーアは原子核周辺の電子の軌道半径を「量子化」して考えた。1913年のことだ。電子は「許されるある軌道から別の軌道へ跳び移る」のであり、このときに「エネルギーを『塊』として失う」とみたのだ。

ボーアの理論は、裏返せば「電子が原子核へ向かって連続的に落ちていってエネルギーを失うことは不可能」(太字に傍点、以下の引用でも)ということだ。これは、ニュートン物理学と相容れない。なによりも、惑星や衛星の運動とまったく違うではないか。たとえば、人工衛星が落下するときは緩やかに弧を描いて高度を落としてくる。ところが、電子はぴょんと跳ぶというのだ。軌道から軌道へ移る間、それはいったいどこに存在するのか?

この問題を驚くべき発想で解決したのが、ヴェルナー・ハイゼンベルクだ。前提として受け入れたのは、電子の居場所はニュートン物理が対象とする天体や振り子のようには観測できない、ということだ。「位置や速さ、経路や軌道という古典的な概念が原子のレベルでは観測不可能だとしたら、それらの概念に基づいて原子などの系の科学を構築しようとするのはやめるべきかもしれない」――こうして1925年、量子力学を築いたのである。

その量子力学では、電子がエネルギーを失うときに放たれる光の色(振動数)や強さ(振幅)といった観測可能量だけをもとに数の行列(マトリクス)を組み立てる。理論から「イメージできる電子軌道」を外して「純粋に数学的な存在」に仕立て直したのだ。

余談になるが、ここらあたりは、学生たちが授業で量子力学を教わるときに最初につまずくところだ。物理学を学んでいるはずなのに数学の勉強を強いられる。数学が苦手な若者は、ここで物理世界に分け入る道を遮断されてしまう。私もその一人だった。ただ、この場を借りて私見を述べさせてもらえば、そこで諦めてしまうのは残念なことだ。数式をきちんと読めなくとも量子世界の空気は感じとれる。それは、世界観を豊かにしてくれる。

数学ずくめに不満な学生にとっては、助け舟もある。それを用意してくれたのが、量子力学のもう一人の建設者とされるエルヴィン・シュレーディンガーだ。彼は、ハイゼンベルクが行列で表した力学を、別のかたちで表現した。波動方程式である。波のイメージは、ニュートン物理の世界像にまだ囚われていた学界に受け入れられやすかったことが、この本からもわかる。学者でなければなおさらだ。私も波のイメージにだいぶ助けられた。

ハイゼンベルクも黙ってはいなかった。1927年、「古典的なイメージ」に追撃を加える。「不確定性原理」と呼ばれるものだ。それによれば「物体は位置や速度といった正確な性質は持っておらず」、位置と速度は「一方を精確に測定すればするほどもう一方の測定精度は落ちてしまう」関係にあるという。これは技術の限界ではなく、物理そのものの制約だ。「ニュートンのように運動をイメージするのは無駄」とダメを押したのである。

量子力学が教えてくれるのは、「これらのうちのどれかが起こる」ということだ。そこには「確率しか存在しない」と言ってもいい。「この宇宙は巨大なビンゴゲームのようなもの」――そんな世界像を量子論は示した、と著者は言う。ラプラスの魔はいなかったのだ。フィリップ・K・ディックのSF作品『偶然世界』(小尾芙佐訳、ハヤカワ文庫SF)が思いだされる(「本読み by chance」2020年3月20日付「ディックSFを読んでのカジノ考」)。

近代人は長くニュートン流の決定論を信じてきた。いや、今でもふつうには信じている。この本にも言及があるように、地震は予知できるという見方があるのも、社会科学者が未来予測に憧れるのも、この通念に根ざしている。ところが20世紀物理学は、決定論の方程式は限られた範囲だけで通用するものであり、世界の根底には偶然をはらんだ方程式があるらしいという見方にたどり着いたのだ。「偶然」の勝利である。

で、ここで著者は、またまた父を登場させる。ナチスがユダヤ人を整列させていたときのことだ。父はたまたま、列の後尾に並んでいた。親衛隊士官は、必要なのはユダヤ人3000人だとして、父を含む4人だけを切り離して連れ去った。3000人は墓掘りを強いられたうえ銃殺されたという。それは「父にとっては理解しがたい偶然だった」。この体験のせいか、父は後年、著者が語る量子論の不確定性を「容易に受け入れてくれた」そうだ。

最後に付け足しになってしまうが、著者が立派なのは、自らの専門分野を離れて生物学系の科学史にも踏み込んでいることだ。ここでは、著者がページを割いて詳述しているのが19世紀半ばに登場したチャールズ・ダーウィンの進化論であることに注目したい。

ダーウィンによれば、生物は「ランダムな変異と自然選択」によって進化する。考えてみれば、そこにある自然観も量子力学同様、アリストテレスの目的論やニュートンの決定論になじまない。偶然は凄いのだ。この本を読み切って、その思いを改めて強くする。
(執筆撮影・尾関章)
=2020年11月27日公開、通算550回
■引用はことわりがない限り、冒頭に掲げた書物からのものです。
■時制や人物の年齢、肩書などは公開時点のものとします。
■公開後の更新は最小限にとどめます。

科学のどこが凄いかがわかる本

今週の書物/
『この世界を知るための人類と科学の400万年史』
レナード・ムロディナウ著、水谷淳訳、河出文庫、2020年刊

斜面

若かったころの私的な思い出を一つ打ち明けると、大学の卒論研究はニュートンだった。私がいた学部学科に科学史の研究室はなかったが、それでも物理学の歴史に関心があった。定年間近の老教授が好きな卒論テーマを選んでよいというので、その言葉に甘えたのだ。

手にとったのは、アイザック・ニュートン著『プリンキピア』(自然哲学の数学的原理)の英語版。もともとラテン語で書かれた本だから、原著ではない。これを図書館で閲覧して――借りたような気もするが――要所を複写した。どこに的を絞ったかと言えば、ニュートンが万有引力を遠隔作用ととらえた点だ。力は媒質によって伝わる近接作用だとする従来の見方を塗りかえるものだった。そこに至る思考の足跡をたどろうとしたのである。

学部学生が古典の大著をかじっただけでまとめた考察だから高が知れている。ただ私自身にとっては、ニュートンが近接作用論に執拗な反駁を加えていることが大きな発見だった。当時は近接作用を前提とする宇宙観が広まっていたが、それにノーを突きつけたのだ。

遠隔作用論と近接作用論の確執はその後も続く。18~19世紀はニュートン力学が地歩を固め、前者優勢の様相があったが、20世紀に入ると相対性理論も量子力学も「場」という概念を取り込んで後者の立場をとるようになった。

科学とは、ものの見方を変えていく営みなのだ、とつくづく思う。で今週は、科学史のダイナミズムを見せつけてくれる1冊を紹介する。

『この世界を知るための人類と科学の400万年史』(レナード・ムロディナウ著、水谷淳訳、河出文庫、2020年刊)。著者は1954年、米国シカゴ生まれ。量子力学の理論を専門とする物理学者でありながら、テレビドラマの脚本家でもある人だ。略歴欄にはドラマの代表作として「新スタートレック」「冒険野郎マクガイバー」の名が挙がっている。本書は原著出版が2015年。邦訳の単行本は翌16年、河出書房新社から出ている。

この1冊を私が手にとったのは、この著者の本なら期待を裏切らない、という確信があったからだ。かつて新聞の読書面で、同じ著者の『たまたま――日常に潜む「偶然」を科学する』(田中三彦訳、ダイヤモンド社)という本を書評した(朝日新聞2009年11月8日朝刊)。そのときに印象に残ったのは、著者が現代科学で重みが増した「偶然」について物理学者として語りながら、それに自分自身の家族史を重ねあわせていたことだ。

著者のウェブサイトに入ると、その家族史がわかる。父も母も、ナチスによるユダヤ人迫害で収容所に送られながら、大虐殺は免れた。とくに父は、ユダヤ人地下活動の指導者の一人だったという。二人は、いくつもの偶然のおかげで生き延び、出会い、そして著者が生まれたのだ。私は『たまたま』の書評で「歴史の大波と偶発事の小波が重なって人々の生をもてあそんだ現実が、この本の偶然観に深みを与えている」と書いた。

今回の『…400万年史』にも、父の話がしばしば出てくる。いや、著者が心のなかで父と対話を重ねながらまとめたのがこの本だ、と言ってもよいだろう。「知りたいという欲求」と題された第1章も、父から聞いたという収容所のエピソードから書きだされる。

父は円周率πも知らないような人だったが、ある日、収容所仲間の一人から数学のパズルを出題される。何日も頭をしぼったが解けない。聞いても答えを教えてくれないので、とうとう別の仲間にパンを譲り分けて、正解を手に入れたというのだ。支給されるパンが命綱だったころの話だ。「知りたいという欲求」はそんなに強いのか。著者は、自身の「この世界を理解したいという情熱」も結局は「父と同じ衝動に突き動かされている」と思い至る。

著者が理系に進んでからのことだ。父は、科学の話題になると「その理論がどうしてできたのか」「なぜそれを美しいと感じるのか」「我々人間にとってどういう意味があるのか」と質問攻めにしてきたという。専門知識よりも「おおもとの意味」に興味津々だったらしい。

ここからわかるのは、著者の内面には父親譲りの知的探究心が息づいていることだ。だから、この本が描いているのは、ものの見方としての科学の歴史であり、実益本位のそれではない。原題は“The Upright Thinkers: The Human Journey from Living in Trees to Understanding the Cosmos”。ちょっと強引に訳せば「直立〈考〉人――樹上生活者が宇宙を理解するまでの人類の長い旅」ということになろうか。〈考〉が大事なのだ。

では、この本が人類のものの見方の移ろいをどう描いているのか、大筋を見ていこう。著者は近代科学の原点を、古代ギリシャのアリストテレスの世界観を吹っ切るところに見いだしている。アリストテレスは、宇宙を「生態系のようなもの」ととらえた。「目的」の重視だ。雨降りは植物が育つため、植物の生長は動物の食べものになるため……。動物の動きも「ウマは荷馬車を走らせるため」「ヤギは餌を探すため」という具合だった。

近代科学はこうした目的論を否定する。この本によれば、兆しは中世の14世紀、英オックスフォード大学の数学者が見つけた「史上初の定量的な運動の法則」にある。カレッジ名から「マートン則」と呼ばれる。今風に言えば「自動車を速さゼロから時速一〇〇キロまで一定の割合で加速させると、ずっと時速五〇キロで走っていたのと同じ距離だけ進む」ということだ。この法則はすべての物質の運動に遍く適用できるので、目的論になじまない。

中世が過ぎると、反アリストテレスの流れは強まる。16世紀半ばに生を受けたガリレオ・ガリレイは、アリストテレスの理論が「観察」から導きだされていることが不満だった。裏返せば「実験」を重んじたのだ。そこには、受け身ではない探究の姿勢がある。

たとえば、落下運動。アリストテレスの見方では、物体はその重さに比例して決まる一定の速さで落ちていく。これは「石は葉っぱよりも速く落ちる」という観察結果にも合っている。一方で、私たちは直観で「物体は落下するにつれて速さが増す」と感じている。この相反する2説を吟味するのに、ガリレオは実験という手法を選んだ。その結果、落下の速さは重さによらず、どの物体も一定の加速度で落ちていくことがわかったのだ。

ガリレオの実験は、重さの異なる金属球を真下に落とすものではなかった。斜面に転がしたのだ。これなら「運動をゆっくりにして」測れる。摩擦という「基本法則の単純さを見えにくくするもの」も小さくできる。さらに見事なのは、斜面の実験を垂直方向の落下の検証につなげる論理だ。「傾斜をどんどん急にしていっても同じ性質が成り立つ」ことを見てとって、斜面を90度に直立させたときも同様だろうと見極めている。

ガリレオは、法則が見えやすい物理系を自ら設計した。それを調べることで、生態系のように複雑なアリストテレス的世界に潜む単純明快なしくみを突きとめたのだ。そのしくみを理論体系にまとめたのがアイザック・ニュートンだ。著者は、ガリレオとニュートンが「現実世界に存在する無数の複雑な要因を見抜いてそれらを削ぎ落とし、もっと基本的なレベルで作用する簡潔な法則を白日のもとにさらした」と称賛している。

以上の流れを追うと、近代科学はギリシャ哲学に反旗を翻したようにも見える。だが、そうではない。著者は、ギリシャの先哲のうちタレスやピタゴラスにも言及している。前者は「自然は秩序立った法則に従う」と述べ、後者は「自然は数学的法則に従う」(「数学的」に傍点)と断じた。これは、理系ギリシャ哲学のもう一つの柱と言えよう。マートン則の定量志向はガリレオやニュートンに受け継がれたが、その水源はここにあったとも言える。

欧州史は、古代ギリシャ・ローマ時代から中世を経て、ルネサンスによって古代の良さを再発見するという道筋で概観されることが多い。この見方は、絵画や彫刻、建築には通用するだろう。だが、科学史はもうちょっと複雑だ。近代科学はギリシャの叡智に導かれつつも、その呪縛を振りほどこうとして産声をあげたのである。今回は、この大著をひとかじりしただけで字数が尽きた。次回は同じ本を別の視点から読み込んでみよう。
(執筆撮影・尾関章)
=2020年11月20日公開、通算549回
■引用はことわりがない限り、冒頭に掲げた書物からのものです。
■時制や人物の年齢、肩書などは公開時点のものとします。
■公開後の更新は最小限にとどめます。

ノーベル物理学賞が一線を越えた

今週の書物/
2020
年ノーベル物理学賞発表資料(下の画像はその一部)
スウェーデン王立科学アカデミー

特異点

ノーベル賞の発表資料、とりわけ理系3賞のそれは、なかなか読み応えがある。

中身の難解さは超一級。論文で読めば、術語だらけ、数式交じりということになろう。ところが、発表資料のうちでもプレスリリース即ち報道用の資料や一般向けの解説は、タウン誌さながらの平たい文章で書かれている。その落差にこそ値打ちがある。

無署名の文書だ。だれが書いているのだろうか。いつも、そう訝る。建前から言えば、賞の選考にあたった科学者の一人とみるべきだろうが、それにしては文章がこなれている。手練れの科学ジャーナリストか、あるいは、それに類する人の手になるものか?――というのが10月9日公開時の当稿だった。だが、ここで私は誤った。その後、ノーベル賞のウェブサイトを調べたら、資料によっては筆者の署名が入っていることがわかったのだ。

たとえば今年、物理学賞や化学賞の一般向け解説として出された資料には、文末に小さな文字で筆者名が記されている。ネットで検索すると、その人と思われる科学ライターやジャーナリストが実在する。やはり、メディア系の人物が資料づくりにかかわっていたのだ。そうか、ノーベル賞の選考情報は候補者を絞り込んだ段階になって、わが業界の仲間たちの手に渡っていたのだ。この人たちと友だちになっていればよかった、とつくづく思う。

それにしても、ノーベル賞の選考経過はめったに漏れない。2010年、医学生理学賞を地元スウェーデン紙がすっぱ抜いた例が思いだされるくらいだ。執筆を頼まれた書き手は、発表資料という媒体に特ダネを出稿するようなつもりで秘密を厳守しているのだろう。

発表資料の文章が「こなれている」とはどういうことか。専門の話をかみ砕いて伝えていることは間違いない。だが、それだけではない。選考時の議論をしっかり踏まえているからだろうが、受賞研究の価値を的確にえぐり出している。科学研究をめぐる記述は、それが価値評価の次元に及んだとき、もはや術語や数式は要らなくなる。日常の言葉で語ることができるのだ。だから、タウン誌同様、平明であっても不思議はない。

で、今週の「書物」は、ノーベル各賞の発表資料。この文書は、去年も物理学賞と平和賞について当欄の前身「本読み by chance」でとりあげている(2019年10月11日付「ノーベル賞がETを視野に入れた日」、2019年10月18日付「平和賞があえて政治家を選んだわけ」)。今年は2回に分けて、理系各賞の発表資料から、これはという読みどころを拾いあげよう。今週はまず、10月6日に発表された物理学賞に目を向けてみる。

物理学賞は、ブラックホールの研究者3人に贈られる。英国のロジャー・ペンローズは1965年、ブラックホールの形成が一般相対論から導きだせることを示した。ドイツのラインハルト・ゲンツェル、米国のアンドレア・ゲズは1990年代以来初頭の天体観測で、銀河系の中心に超大質量高密度の天体が存在することを確認した。太陽の400万倍もの質量が太陽系ほどの領域に詰まっている。ブラックホールがあるに違いなかった(敬称略、以下も)。

今回の選考結果で興味深いのは、2年続きで宇宙・天文分野が選ばれたことだ(前述の「ノーベル賞がETを視野に入れた日」参照)。しかも、受賞者の構成が理論家1人、観測家2人というのも同じ。理論家が一角を占めたのは、宇宙物理学の現況を反映している。

ノーベル賞は手堅いので、検証が難しい研究は敬遠される。だから、宇宙物理の理論家、即ち宇宙論の学者は不利だった。あのスティーヴン・ホーキング(1942~2018)が受賞に縁がなかった理由の一つもそこにある。ところが、ここ数十年で宇宙観測の技術が格段に進歩した。可視光を含む電磁波や素粒子を精度良くとらえる機器が、地上や地下や宇宙空間に勢ぞろいしてきた。理論家の仕事が観測で裏打ちされる時代に入ったのだ。

ここでは、そんな宇宙論学者ペンローズ(1931~)に焦点を当てる。ただ、この人は宇宙のことだけを考えているのではない。「ペンローズのタイル貼り」という幾何模様で有名な数学者でもある。心とは何か、という人文系の難題にも挑んで著書を出している。ホーキングとは同分野の人。好奇心旺盛なところも似ている。私は現役時代、覚えている限りで計3回、取材の機会を得た。至言をいくつか聞いているが、その紹介は別の機会に譲ろう。

今回の発表を聞いて、私には一つ疑問が湧いた。ブラックホールを予言したのはペンローズが初めてだったのか、ということだ。答えは、発表資料のうち一般向け解説で明かされている。「いま私たちがブラックホールと呼ぶものの最初の理論的な記述は、一般相対論の発表後、数週間のうちに出ている」。プレスリリースにも、アインシュタインがブラックホールの実在を信じなかったという話が出てくる。概念そのものは早くからあったのだ。

では、ペンローズのブラックホールはどこが違うのか。一般向け解説によると、違いは「特異点定理」にあるらしい。特異点では、物質の密度が無限大であり、空間も時間も止まって既知の法則は破綻する。彼は、それを組み込んだブラックホール像を描きだしたのだ。その描像では、「事象の地平線」と呼ばれる境目の内側で時間が空間に取って代わる。吸い込まれた物質はすべて時間の流れに乗って最奥の特異点まで運ばれ、そこで時間も止まる。

このような筋書きで、物体が自らの重みで潰れたときにブラックホールをかたちづくることを「現実的な解」として示したのが、ペンローズの理論だった。

では、プレスリリースでもっとも印象に残る記述を挙げよう。ペンローズがブラックホールの細密に描きだしたことを述べた後、このように書かれている。“at their heart, black holes hide a singularity in which all the known laws of nature cease.”

「ブラックホールは、その心臓部に特異点を隠しもっている。その一点では、私たちが知っている自然法則のすべてが停止する」。これは、ノーベル賞が一線を踏み越え、現代物理学の枠外にある無法地帯――地帯というより地点だが――を認めたとも読みとれる。

さて、ゲンツェル、ゲズそれぞれのグループが、銀河系中心のブラックホールの存在を確信したのは、周辺の天体運動を精密に測定したからだった。特異点という抽象的な存在を具体的な現象で裏づけたことになる。だからこそ、ノーベル賞も一線を越えられたのだろう。

最後にもう一度、ホーキングの話を。実は彼も1960年代、ペンローズとともに特異点定理の研究をしている。あと3年ほど長生きしていたら、今回の受賞者に名を連ねることもあったのではないか? 一瞬そんなふうにも思ったが、それはちょっと違う。

ホーキングは著書『ホーキング、宇宙を語る――ビッグバンからブラックホールまで』(スティーヴン・W・ホーキング著、林一訳、ハヤカワ文庫NF)で、1965年に「ペンローズの定理について読んだ」と述べている。その定理では、重力崩壊する物体は「最後には特異点をつくる」としていた。これこそが、今回の受賞研究だ。どうやら、特異点の探究では、10歳ほど年長のペンローズに一日の長があったとみて間違いないらしい。

ホーキング自身が特異点の研究で注目を集めるようになったのは、1970年にペンローズとの共著論文を発表してからだ。この論文は、一般相対論が成り立てば、宇宙の始まりに「ビッグバン特異点」があるはずだとの見方を示していた。彼はその後、この特異点を消し去るべく、自らの宇宙論に虚時間の世界をもち込むのだ。(「本読み by chance」2018年3月30日付「ホーキングの虚時間を熟読吟味する」)

宇宙観測の技術は、日進月歩で進んでいる。だが、宇宙の始まりに特異点があるかどうか、そこに虚時間があるかどうかの判別は簡単ではない。ホーキングは没後の今も、ノーベル賞から遠いところで讃えられる科学者であり続ける。それはそれで、よいことではないか。
(執筆撮影・尾関章)
=2020年10月9日公開、同年11月9日最終更新、通算543回
■引用はことわりがない限り、冒頭に掲げた書物からのものです。
■時制や人物の年齢、肩書などは公開時点のものとします。
■公開後の更新は最小限にとどめます。