今週の書物/
『量子力学の誕生』(ニールス・ボーア論文集2)
ニールス・ボーア著、山本義隆編訳、岩波文庫、2000年刊
私は数カ月前、量子の話題を継続的にとりあげていくと宣言した(2021年5月28日付「量子の世界に一歩踏み込む」)。量子コンピューターなど量子情報科学の技術が現実のものになりつつある今、それとつかず離れずの関係にある今日の量子力学的世界観に迫る、というのが最終目標だ。私は科学記者として1990年代半ば、この問題を集中的に取材したから、そのときに仕入れた知識を更新したいという切実な思いもある。
ただ、その前にしておきたい準備があった。これまでも書いてきたように、私は学生時代、量子につまずいている。「量子力学」の授業を一応は受けたが、板書される数式を追いかけていただけだった。だから後年、科学記者として量子力学の新しい解釈を知ることになっても、それと対比される旧来の解釈はぼやけていた。これでは新しい解釈を正しく位置づけられない。だから今からでも、旧来の解釈を輪郭づけたいと考えたのだ。
それで、まずはとっつきやすいものからと思い、日本人物理学者が日本語で書いた『NIELS BOHR』(仁科芳雄著、青空文庫)という短い書物を読んだのだ。その評伝が描くデンマークの物理学者ニールス・ボーア(1885~1962)は、原子の構造を考えるときにエネルギーはとびとびの値をとるという量子仮説をもち込み、量子力学の建設へ道を開いた人だ(前述の当欄「量子の世界に…」と2021年6月4日付「量子力学のリョ、実存に出会う」)。
だが、この書物の選択は半分成功で半分失敗だった。私がおぼろげながら覚えていた教科書的な知識を復習することはできた。だが、一方で隔靴掻痒の感があったことも否めない。それは「量子力学のリョ…」にも書いた通りだ。たぶんボーアの考え方を、また聞きしただけだからだろう。仁科は、欧州でボーアに師事した人なので、師の真意を誤解していることはあるまい。だが、学説には本人の言葉でしか伝わらない含蓄もある。
で、今週は『量子力学の誕生』(ニールス・ボーア著、山本義隆編訳、岩波文庫「ニールス・ボーア論文集2」、2000年刊)。著者ボーアの論考や講演録が合わせて18編収められている。執筆や講演の日付で言えば、量子力学が提案された1925年から最晩年の1961年まで、36年間に及ぶ。量子力学が数式なしの言葉で述べられている文献が大半で、物理学者同士の交遊を素描したくだりは科学史の一級史料としても読める。
とはいえ、本書は、数式がほとんどなくても難解だ。前提の知識がないと文意を汲みとれない箇所がいっぱいある。たとえば、原子が放出したり吸収したりする光のスペクトルにどんな規則があるか、などがわかっていないと先へ進めなくなる。すんなり通読できないのだ。ということで私は今回、〈探し読み〉を試みた。まず標的を定め、ページをぱらぱらとめくって、それらしいくだりを見つけたらそこを集中的に読む、という方式だ。
最初の標的は、ドイツのウェルナー・ハイゼンベルクが1925年に発表した行列力学版の量子力学である。その要点は、本書冒頭に収められた「原子論と力学」(1925年)という講演録の後日に加筆されたらしい箇所で説明されている。ハイゼンベルクの立場では「従来の力学と異なり、原子的粒子の運動の時間的・空間的記述を扱わない」。計算はすべて「観測可能な量だけ」で書かれるという。では、観測可能(オブザーバブル)な量とは何か。
それでふと思いだしたのが、『この世界を知るための人類と科学の400万年史』(レナード・ムロディナウ著、水谷淳訳、河出文庫、2020年刊)だ。この本も、ハイゼンベルクの理論をとりあげていた。(当欄2020年11月27日付「偶然のどこが凄いかがわかる本」)
ムロディナウの解説によると、行列力学は「位置や速さ、経路や軌道という古典的な概念」を「原子のレベルでは観測不可能」とみる。では、何が観測可能か。原子がエネルギーを失うときに出る「光の色(振動数)」や「強さ(振幅)」などがそれに当たるという。
ボーア本に戻ろう。ハイゼンベルクが物理現象を表すのにもち込んだのは、一群の数値を縦横に並べた行列(マトリクス)だ。「ラザフォード記念講演――核科学の創始者の追憶とその業績にもとづくいくつかの発展の回想」(1958年)という一編によれば、その行列の数値(要素)は「定常状態間のすべての可能な遷移過程に関係づけられている」。それによって「状態のエネルギーと関連した遷移過程の確率」がわかるというのだ。
「定常状態」の間の「遷移」とは、原子で言えば、原子核の周りにある電子の状態がぴょんぴょん変わることを指している。著者も述べているように、それは「状態のエネルギー」にかかわる。原子は光を吸ったり吐いたりすることでエネルギーをやりとりしているから、私たちは、光の観測でエネルギーの出入りをみて状態の変化を知るわけだ。このときに電子そのものは観測不可能なので、「時間的・空間的記述」即ち軌道の描像はなじまない。
息抜きの余談だが、「量子力学の誕生」(1961年)では興味深い逸話が紹介されている。ハイゼンベルクがあるとき、「僕は、じつは行列が何であるのかさえ知らない」という言葉を漏らしたというのだ。文脈からみると、数学者が行列について語るのを聞いても、ついていけないというくらいの意味らしい。「知らない」の次元が違うのだ。ただ、行列は思考の一つの道具に過ぎないという突き放し感があって、物理学者らしいな、という気もする。
さて次の標的は、ハイゼンベルクの不確定性原理だ。粒子の位置を精確に測ろうとすると運動量がばらつき、運動量を絞り込めば位置がぼやけるという量子力学の掟である。著者は本書で、位置と運動量の対よりも「時間・空間概念」と「動力学的保存則」の対に目を向け、その両立しがたい関係が不確定性原理に対応すると言っている。「化学と原子構造の量子論」(1930年)や「ゼーマン効果と原子構造の理論」(1935年)から要点を掬いとろう。
著者は「すべての測定には対象と測定装置のあいだに有限の相互作用がまつわりつく」と指摘する。たとえば、原子核の周りにある電子の「時間・空間座標を確定しよう」とすると、電子と装置との間でなされる「エネルギーと運動量の受け渡し」が避けられない。その「受け渡し」は「制御不可能」なので、電子の「動力学的振る舞い」が測定の前後でどうなるかが曖昧になる。エネルギーや運動量などの動力学的保存則がぐらつくというのだ。
逆もまた真なり。ここで著者は「定常状態」の話をもちだす。さきほど行列力学のくだりでも述べた通り、原子核の周りの電子は定常状態のどれか一つにあり、別の状態には一定のエネルギーを吸ったり吐いたりして跳び移る、とみることができる。この見方をすれば、動力学的保存則は守られるが、電子がある時刻、どの位置にいるかがわかる軌道は思い描けない。「時間的・空間的描像」はあきらめなくてはならないということだ。
著者は「時間的・空間的な座標付けと動力学的保存則は、従来の因果性の二つの相補的側面」(太字箇所は本文でも)と結論づける。因果律について言えば、座標付けも保存則も「その固有の有効性を失うことはないけれども相互にある程度排除しあう」というのだ。「因果性という古典論の理想を相補性というより広い観点で置き換えなければならなくなる」ともある。因果律は、量子世界では見方によって別の側面から際立ってくるということか。
私には今回、宿題が一つあった。仁科本を当欄「量子力学のリョ…」で読んだとき、ボーアは量子世界でもエネルギーや運動量の保存則が成り立つとみている、と私は理解した。もしそうなら、運動量のばらつきを織り込んだ不確定性原理に矛盾する。そんなふうに思って困惑したのだ。たぶん、それは私の読み方が浅かったからだろう。本書によって、ボーアも保存則がぼやけることがあると考えていたとわかり、やっと腑に落ちた。
標的は、もう一つある。ただ、頭がだいぶ疲れた。回を改めることにしよう。
(執筆撮影・尾関章)
=2021年9月10日公開、同月14日最終更新、通算591回
■引用はことわりがない限り、冒頭に掲げた書物からのものです。
■本文の時制や人物の年齢、肩書などは公開時点のものとします。
■公開後の更新は最小限にとどめます。